

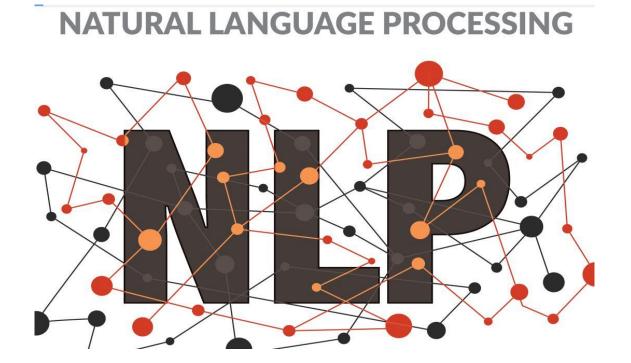
TransESC: Smoothing Emotional Support Conversation via Turn-Level State Transition

Weixiang Zhao, Yanyan Zhao^{*}, Shilong Wang, Bing Qin Research Center for Social Computing and Information Retrieval Harbin Institute of Technology, China {wxzhao, yyzhao}@ir.hit.edu.cn

code: https://github.com/circle-hit/TransESC

2023. 5. 18 • ChongQing

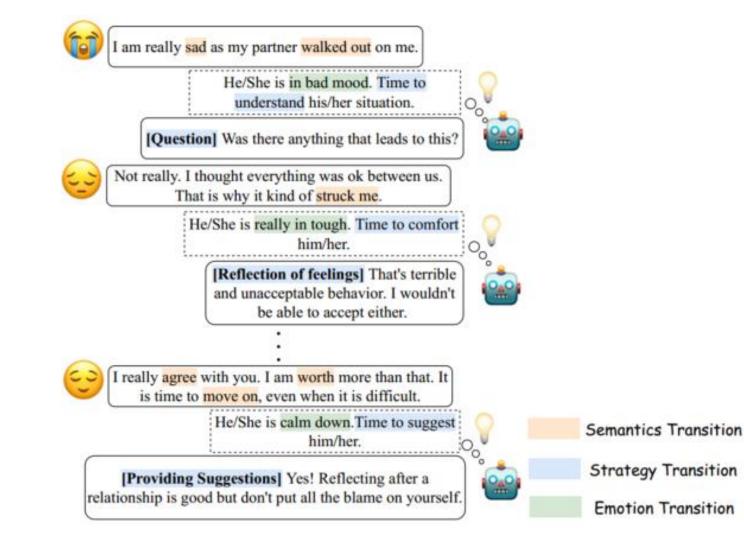
2023_ACL



1.Introduction

2.Method

3.Experiments



Introduction

Previous works ignoring to grasp the fine-grained transition information at each dialogue turn.

Method

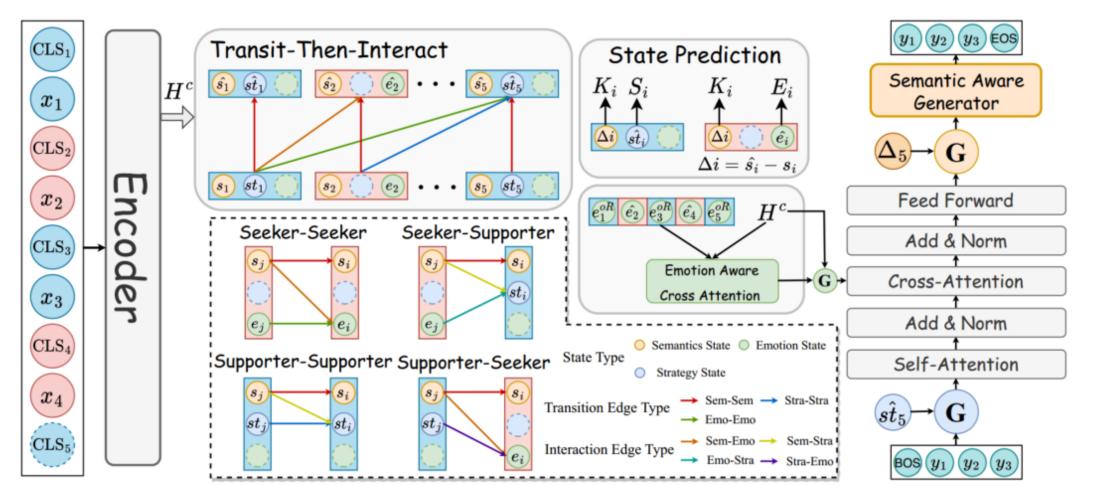
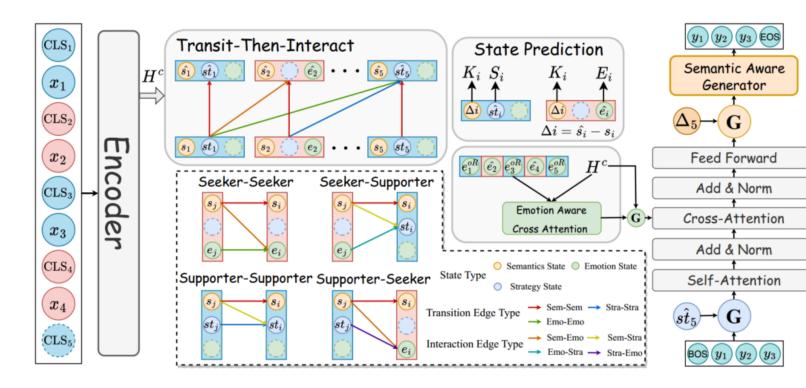



Figure 2: The overall architecture of our proposed TransESC model, which mainly consists of three modules: Context Encoder, Turn-Level State Transition Module and Transition-Aware Decoder.

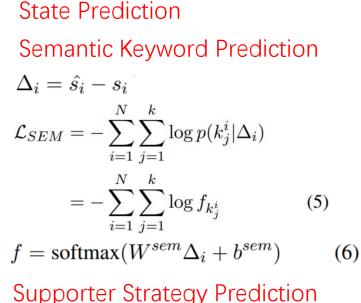
Method

$$D = [X_1, X_2, \cdots, X_N]$$
$$X_i = [w_1^i, w_2^i \cdots, w_m^i]$$
$$K_i = [k_1^i, k_2^i \cdots, k_k^i]$$

support strategy S_i of the supporter emotional state label E_i of the seeker Turn-Level State Transition

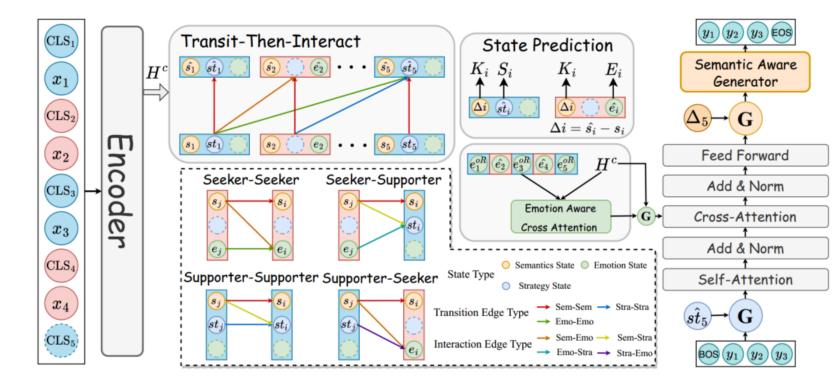
$$\hat{v}_i = \underset{j \in \mathcal{N}}{\mathsf{MHA}}(q_i, k_j, v_j), \tag{1}$$

$$s'_{i} = \underset{e_{ij} \in \mathcal{T}}{\operatorname{R-MHA}}(s_{i} + r_{ij}, s_{j} + r_{ij}, s_{j}), \quad (2)$$


$$s_i'' = \operatorname{R-MHA}_{e_{ij} \in \mathcal{I}} A(s_i' + r_{ij}, s_j' + r_{ij}, s_j'), \quad (3)$$

$$\hat{s}_i = g^{tti} \odot s'_i + (1 - g^{tti}) \odot s''_i$$

$$g^{tti} = \sigma([s'_i; s''_i] W^{tti} + b^{tti})$$
(4)



 $\hat{y}_{str} = \text{softmax}(W^{str}\hat{st}_i + b^{str}) \qquad (7)$ $\mathcal{L}_{STR} = -\frac{1}{N} \sum_{i=1}^N \sum_{i=1}^{n_s} \hat{y}_{str,i}^j \cdot \log(y_{str,i}^j) \qquad (8)$

Seeker Emotion Prediction

$$\hat{y}_{emo} = \operatorname{softmax}(W^{emo}\hat{e}_i + b^{emo}) \qquad (9)$$

$$\mathcal{L}_{EMO} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{n_e} \hat{y}_{emo,i}^j \cdot \log(y_{emo,i}^j) \quad (10)$$

Method

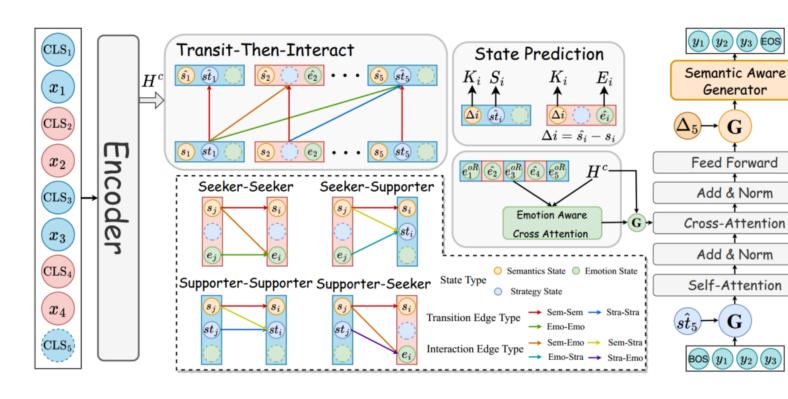
Transition-Aware Decoder

$$\hat{E}_i = g^{str} \odot E_i + (1 - g^{str}) \odot \hat{st}$$

$$g^{str} = \sigma([E_i; \hat{st}]W^1 + b^1)$$
(11)

 $\hat{H} = g^{emo} \odot H^c + (1 - g^{emo}) \odot \hat{H}^{emo}$ $\hat{H}^{emo} = \text{Cross-Att}(H^c, H^{emo}) \qquad (12)$ $g^{emo} = \sigma([H^c; \hat{H}^{emo}]W^2 + b^2)$

$$h_t = \text{Decoder}(\hat{E}_{y < t}, \hat{H})$$
 (13)


$$\hat{h} = g^{sem} \odot h_t + (1 - g^{sem}) \odot \Delta_i$$

$$g^{sem} = \sigma([h_t; \Delta_i] W^{sem} + b^{sem})$$
(14)

$$P(y_t \mid y_{< t}, D) = \operatorname{softmax}(W\hat{h} + b)$$
 (15)

$$L_{gen} = -\sum_{t=1}^{M} \log P(y_t \mid D, y_{< t}).$$
 (16)

 $\mathcal{L} = \gamma_1 \mathcal{L}_{GEN} + \gamma_2 \mathcal{L}_{SEM} + \gamma_3 \mathcal{L}_{STR} + \gamma_4 \mathcal{L}_{EMO}$ (17)

Model	Acc	PPL	D-1	D-2	B-1	B-2	B-3	B-4	R-L
Transformer	-	89.61	1.29	6.91	-	6.53	-	1.37	15.17
Multi-TRS	-	89.52	1.28	7.12	-	6.58	-	1.47	14.75
MoEL	-	133.13	2.33	15.26	-	5.93	-	1.22	14.65
MIME	-	47.51	2.11	10.94	-	5.23	-	1.17	14.74
BlenderBot-Joint	17.69	17.39	2.96	17.87	18.78	7.02	3.20	1.63	14.92
GLHG	-	15.67	3.50	21.61	19.66	7.57	3.74	2.13	16.37
MISC	31.67	16.27	4.62	20.17	16.31	6.57	3.26	1.83	17.24
TransESC (Ours)	34.71	15.85	4.73	20.48	17.92	7.64	4.01	2.43	17.51

Table 1: Comparison of our model against state-of-the-art baselines in terms of the automatic evaluation. The best results among all models are highlighted in bold.

TransESC vs.	Blend	derBot-J	Joint	MISC			
	Win	Lose	Tie	Win	Lose	Tie	
Fluency	54.7 [‡]	18.0	27.3	65.7 [‡]	10.7	23.7	
Identification	37.3 [‡]	16.0	46.7	32.0	19.3	48.7	
Empathy	39.3 [‡]	7.0	53.7	48.0 [‡]	5.7	46.3	
Suggestion	37.0	27.7	35.3	46.7 [†]	17.3	36.0	
Overall	51.7 [‡]	26.0	22.3	64.0 [‡]	17.7	18.3	

Table 2: The results of the human interaction evaluation (%). TransESC performs better than all other models (sign test, \ddagger / \ddagger represent *p*-value < 0.05 / 0.1).

Model	Dist-1	B-2	B-4	R-L
TransESC	4.73	7.64	2.43	17.51
w/o Sem. Trans	4.55	7.04	2.13	17.37
w/o Stra. Trans	4.29	6.68	2.01	17.15
w/o Emo. Trans	4.82	7.14	2.22	17.45
w/o T-L. Trans	4.19	6.35	1.94	16.88

Table 3: Results of ablation study. Sem./Stra./Emo./T-L. Trans refer to the semantics/strategy/emotion/all three types of turn-level transition, respectively.

Situation	There is no hope, I am struggling with the pandemic and loneliness
Context	 Supporter: [Affirmation and Reassurance] I know that days can be really hard. I think Seeker: Yeah, I just kind of feel like a failure in life Seeker: But I am trying, thanks. Supporter: [Affirmation and Reassurance] I understand that there are things in your life
BlenderBot-Joint MISC	 [Self-disclosure] I can understand why you are feeling this way. It is very difficult to see people be put down for the things that are bothering you. [Others] I think you are doing the right thing!
TransESC	[Providing Suggestions] I think that you should try to focus on what is important to you. I know it can be hard to do that when you are feeling down but I believe that you can do it!
Ground-Truth	[Providing Suggestions] When you feel up to it, do a search for temp agencies near you and hopefully they can give you some leads about a job.

Table 4: Case study of the generated supportive responses by our proposed TransESC and the baselines.

Win. Size	Dist-1	B-2	B-4	R-L	
w = 1	4.68	7.49	2.27	17.25	
w=2	4.73	7.64	2.43	17.51	
w = 3	4.49	6.52	2.26	17.29	
w = 4	4.39	7.04	2.12	17.29	
w = 5	4.71	6.98	2.17	17.24	

Table 5: Results of our proposed model with different lengths of transition window w.

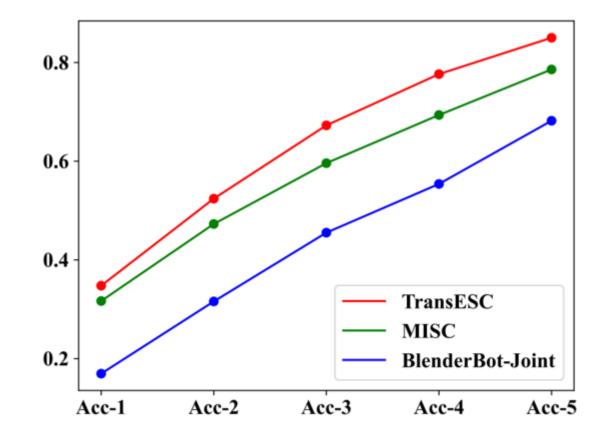


Figure 3: The top-n strategy prediction accuracy of TransESC and two baseline models.

Thank you!

